MOTORCYCLE TRANSPORTATION FACT SHEET

NUMBER OF MOTORCYCLES COMMUTING

Out of a total 129,141,982 commuters in this country (USA, 2003) 147,703 of them ride motorcycles to work regularly. That's only .11 percent. US Census Bureau

Of all the motorcycles registered in the USA, $(6,567,197) 4.3 \%$ of them are used for year-round primary transportation $(282,389)$, with an additional 9.9% used seasonally for this purpose (932,542 total). Motorcycle Industry Council

NUMBER OF MOTORCYCLES ON THE ROAD

As of 2003, there were 5,370,000 motorcycles regularly in use in the United States. US Department of Transportation, Bureau of Transportation Statistics

As of 2003, these $5,370,000$ motorcycles traveled an average of 1,800 miles a year per motorcycle $(9,539,000,000$ total miles). US Department of Transportation, Bureau of Transportation Statistics

TRAFFIC CONGESTION

The average roadway delay per person in 2001 was 26 hours per year and in 2003 it was 47 hours per year, an increase of 81%. The average commute time one way is 25 minutes. Texas Transportation Institute

JOURNEY TIMES

The average United States driver travels 29 miles per day and is driving a total of 55 minutes per day. (This is an average vehicle speed of 32 mph .) US Department of Transportation, Bureau of Transportation Statistics

Tests comparing car and motorcycle performance on real journeys suggest that traveling by motorcycle can shorten journey times by as much as 33 minutes of every hour for town centre and city travel, and 20 minutes of every hour for travel through a mixture of built-up and non built-up areas. Motorcycle Industry Association (UK)

POTENTIAL AGGREGATE BENEFIT

Motorcycles cover 1-2\% of the total distance traveled by road, and cars cover 86%. If 2% of car commuters switched to motorcycles or scooters, the current level of motorcycle utility use would effectively double. Motorcycle Industry Association (UK)

Average 2002 annual household private vehicle expense is $\$ 7,371$. This is divided into $\$ 3,665$ for vehicle purchases, $\$ 1,235$ for gas and oil and $\$ 2,471$ for insurance and misc. US Department of Labor Statistics, Consumer Expenditure Survey

PARKING SPACES

3-5 motorcycles fit per automobile parking space. Ride to Work

TOTAL FUEL CONSUMPTION - 2003

Type	Gallons (millions)	MPG
Motorcycles	191	50.1 avg mpg x 1,800 miles per year per motorcycle
Passenger Cars	74,590	$22.3 \mathrm{avg} \mathrm{mpg} \times 13,000$ miles per year per car
Light Truck / SUV	56,302	$17.7 \mathrm{avg} \mathrm{mpg} \times 13,000$ miles per year per Lt Trk / SUV

US Dept of Transportation, Bureau of Travel Statistics

NORMAL WEEKDAY MOTORCYCLE COMMUTING DAY FUEL USED (estimated)

150,000 commuting motorcycles x 5 mi average commute distance x 2 (both ways) $=1,500,000$ motorcycle commuting miles per day. 1,500,000 motorcycle commuting miles @ 50 mpg (avg) = 30,000 gallons per commuting day.
$100,000,000$ commuting passenger cars, light trucks and SUV's x 6 mi average commute distance $\times 2$ (both ways) $=$ $1,200,000,000$ car, light truck and SUV commuting miles per day. 1,200,000,000 car, light truck and SUV commuting miles at $20 \mathrm{mpg}(\mathrm{avg})=60,000,000$ gallons per day.

RIDE TO WORK DAY FUEL SAVINGS (estimated)

150,000 motorcycles use 30,000 gallons per normal commuting day x 2 (an estimated 150,000 added motorcycles on Ride to Work Day) $=60,000$ gallons used by motorcycles on Ride to Work Day. 60,000 gallons used on Ride to Work Day - 30,000 gallons used by motorcycles on a normal commuting day $=30,000$ additional gallons used by motorcycles on Ride to Work Day.

On Ride to Work Day, there are an estimated 150,000 additional Ride to Work Day commuting motorcycles and 150,000 less commuting car, light truck and SUV's. A 6 mile (avg) commute x 2 (both ways) x 150,000 commuting car, light truck and SUV's $=1,800,000$ car, light truck and SUV miles. 1,800,000 car, light truck and SUV miles / 20 $\mathrm{mpg}(\mathrm{avg})=90,000$ gallons. 90,000 less car, truck and SUV gallons - 30,000 more gallons used on Ride to Work Day $=60,000$ less gallons of fuel used on Ride to Work Day. If every work day were Ride to Work Day, 60,000 gallons saved $\times 250$ work days $=15,000,000$ less gallons used per year.

